

CHAPTER THREECHAPTER THREE

ON FORKING WORDPRESS, FORKS IN GENERAL, EARLY WORDPRESS,
AND THE COMMUNITY

By January 2003, b2 was dormant. Michel, michelvaldrighi, hadn’t
been online for months and no one was maintaining b2. The blog-
ging software at the core of the growing community was no longer
evolving. The web, and blogging, was moving forward, but b2
had lost its driving force. The community was concerned. Michel
blogged at the end of December 2002 and then didn’t post again
until 2004. Where was he? Was he okay?

On his blog, Matt wrote a post called “The Blogging Software
Dilemma,” in which he first mentioned forking b2; the post that
led to the creation of WordPress. At the time, he was concerned

1

http://profiles.wordpress.org/michelvaldrighi
http://zengun.org/weblog/archives/2002/
http://zengun.org/weblog/archives/2002/
http://profiles.wordpress.org/matt
http://ma.tt/2003/01/the-blogging-software-dilemma/
http://ma.tt/2003/01/the-blogging-software-dilemma/

about his website’s forward compatibility. Jeffrey Zeldman’s For-
ward Compatibility: Designing and Building with Standards had
influenced his thinking. Zeldman’s book covered how to create
standards-compliant websites that would work across browsers and
devices. Matt had already converted most of his site to XHTML
1.1, but none of this mattered with b2 dormant. Michel’s disappear-
ance, however, didn’t have to mean the end of the software. Matt
wrote:

“b2/cafelog is GPL, which means that I could use the exist-
ing codebase to create a fork, integrating all the cool stuff
that Michel would be working on right now if only he was
around. The work would never be lost, as if I fell of the face
of the planet a year from now, whatever code I made would
be free to the world, and if someone else wanted to pick it
up they could. I’ve decided that this (sic) the course of ac-
tion I’d like to go in, now all I need is a name. What should
it do? Well, it would be nice to have the flexibility of Mov-
able Type, the parsing of Textpattern, the hackability of b2,
and the ease of setup of Blogger. Someday, right?”

2

http://www.digital-web.com/articles/999_of_websites_are_obsolete/

The next day, from Stockport, UK, Mike Little, mikelittle, re-
sponded:

“If you’re serious about forking b2 I would be interested
in contributing. I’m sure there are one or two others in the
community who would be too. Perhaps a post to the b2 for-
um, suggesting a fork would be a good starting point.”

Forking is the act of bifurcating a free software project, taking
it in a new direction. The word fork derives from computing lan-
guage in the 1960s. In Unix-like operating systems, the fork()

system call causes a process to split into two by copying itself, re-
sulting in parent and child processes. By the mid-1990s, fork was
being used to describe a split in an open source project. It was of-
ten frowned upon in the open source community. Eric Raymond,
an open source leader and author of The Cathedral and the Bazaar,
writes about the taboos around forks in his essay Homesteading the
Noosphere. “The open source culture has an elaborate but largely
un-admitted set of ownership customs,” he writes. “These customs
regulate who can modify software, the circumstances under which

3

http://profiles.wordpress.org/mikelittle
http://www.catb.org/~esr/writings/cathedral-bazaar/
http://www.catb.org/esr/writings/homesteading/homesteading/
http://www.catb.org/esr/writings/homesteading/homesteading/
http://www.catb.org/esr/writings/homesteading/homesteading/ar01s03.html

it can be modified, and (especially) who has the right to redistribute
the modified versions back to the community.” Raymond outlines
some of the taboos around forking:

• Social pressure often prevents project forking. Usually
forking only happens out of “dire necessity, with much
public self justification, and requires a renaming.”

• Except in cases such as porting trivial fixes, distributing
changes without cooperation from the original developer is
frowned upon.

• Removing a person’s name, history, credits, or maintainer
list is not done without the person’s consent.

In general, forking was considered “a Bad Thing,” to be avoid-
ed at all costs to prevent splits in the development community and
arguments over successor legitimacy.

A 2012 study of 220 software forks and their outcomes took a
less dim view. To be a fork, the study outlines, the project should

4

http://www.catb.org/jargon/html/F/forked.html
http://flosshub.org/sites/flosshub.org/files/paper_0.pdf

have four characteristics. It should have a new name, be a branch
of the original software, have a parallel infrastructure (such as web-
site, version control system, and mailing lists), and have a new de-
velopment community that is separate from the original.

The study demonstrated how, despite being taboo, forks were
often successful. The authors of the article argue that “when fork-
ing occurs the sustainability of the software is ensured.” In the case
of a fork, for example, when development on the original project
ceases, it is the fork that goes on to be successful and sustains the
software.

It was under these circumstances — the discontinuation of the
original project — that Matt blogged about forking b2. As some-
one who had used the software for more than a year, he wanted it
to power his blog. After all, he had tried other platforms, each of
which had their own problems.

5

He had tried Movable Type before moving to b2. He hadn’t
been happy with the platform — it didn’t have pingbacks, which
was functionality he was fond of, and comments were in pop-ups
as opposed to being inline. Also Movable Type was written in Perl
with a DBD database, and Matt was more comfortable with PHP
and MySQL. When it came to making alterations, it was easier for
him to do so in b2. Dean Allen’s Textpattern, was another option.
At that time it wasn’t GPL so Matt didn’t feel comfortable back-
ing it. (Textpattern was later released with a GPL license in June
2004.) Blogger involved using FTP which put another barrier be-
tween writing and publishing. With Michel gone and Matt’s PHP
skills growing, forking b2 was the obvious solution.

By blogging about forking b2 and asking the question openly,
he was inviting a community on board. From the other side of the
world, Mike Little wanted to get involved. For Matt and Mike,
forking was a way to continue to use the software, and develop it
for their own needs. On April 1st, 2003, Matt created a new branch

6

http://forum.textpattern.com/viewtopic.php?id=2102
http://forum.textpattern.com/viewtopic.php?id=2102
http://cafelog.cvs.sourceforge.net/viewvc/cafelog/

of b2 on SourceForge, and, with the name coined by his friend
Christine Tremoulet, called it WordPress.

WordPress’ first improvements focused on HTML semantics
and web standards. After initializing the repository in CVS, the ver-
sion control system then in use, and uploading the files, Matt made
basic semantic changes to the index.php file. He fixed white-

space issues, and converted <div> tags into heading tags. Using

the correct tags to generate proper headings reinforced the content’s
semantic meaning on the webpage WordPress generated. Matt also
enhanced index.php’s default structure, aiming for XHTML

strict compliance. Matt and Mike were both committed to stan-
dards compliance. Matt often wrote about the importance of stan-
dards compliance (in 2004 he would become a member of the web
standards project) while Mike wrote enthusiastically about his em-
ployer’s first standards-compliant website. This iterative approach,
along with strict standards compliance, would define WordPress’
development over the coming ten years.

7

http://cafelog.cvs.sourceforge.net/viewvc/cafelog/
http://ma.tt/2004/03/code-is-food/
http://ma.tt/2004/03/code-is-food/
http://ma.tt/2004/05/sting/
http://www.webstandards.org
http://www.webstandards.org
http://zed1.com/journalized/archives/2003/11/21/zendor-standards-compliant-website-launched/

Three weeks after Matt set up the repository, Mike made his
first commit, repopulating files that were missing from the branch.
The first functionality Matt added to WordPress was WP-Texturize,
a tool he created to make text more typographically correct. Mike’s
first feature was excerpt functionality which allowed users to dis-
play handcrafted post summaries in RSS feeds and in other places.

Over the coming months, Mike and Matt made over 100 com-
mits to the WordPress repository. Notable commits included Word-
Press’ branding, Mike’s b2links hack, which remained in Word-
Press until it was no longer turned on by default in WordPress 3.5
(released in 2012), major changes to the administration panel, and
installation process improvements. Creating a simple installation
process was something that both the developers felt strongly about.
Both had experience of Movable Type, and like many others hadn't
found the process straightforward. It was important for WordPress
to create as low a barrier to entry as possible. Anyone should be
able to get on the web and publish their content. Matt replaced the
b2install.php file with a new wp-install.php file. The

8

http://core.trac.wordpress.org/browser/trunk/wp-admin/b2install.php?rev=38
http://core.trac.wordpress.org/browser/trunk/wp-admin/b2install.php?rev=38
http://core.trac.wordpress.org/browser/trunk/wp-admin/wp-install.php?rev=45
http://core.trac.wordpress.org/browser/trunk/wp-admin/wp-install.php?rev=45

aim was to keep configuration to a minimum. In its first version,
the user had to create a MySQL database, add the configuration
details to b2config.php, transfer the files to their server using

FTP, and then run the script.The “famous five-minute install” was
refined over time as the developers tried to make it as easy as pos-
sible to get WordPress installed.

Working with b2 had its own challenges. Michel admits that he
was learning how to write PHP when he wrote b2. The result: some
inefficient code and techniques counter-intuitive to an experienced
coder. Michel’s code reflected a developer learning PHP. Rather
than taking a modular approach to solve a logic problem, the code
grew organically, written as Michel thought about it. Code wasn’t
so much a tool to solve a problem, but a tool to get the newest
feature on the screen. This created multiple code interdependen-
cies which could cause problems for developers new to the project.
A line of code would change, and break something that appeared
unrelated. It wasn’t all bad, however. Michel’s inexperience also
meant that the code had a level of simplicity that made it easy for

9

http://wordpress.tv/2012/02/27/les-origines-de-wordpress-la-naissance-de-b2cafelog/

other developers to understand. Whereas a more experienced de-
veloper might write complex code, Michel often took the simplest
route to solve a problem. “In a way it was beautiful because it was
so simple,” says developer Alex King, alexkingorg, “It wasn’t ele-
gant but it was very straightforward and very accessible. For some-
one who didn’t have a lot of development experience coming in —
like me — it was very comfortable understanding what was going
on.”

During the initial development period, Matt and Mike had com-
mit access to the repository; both could make changes to WordPress
whenever they felt like it. They used their own experience as blog-
gers, as well as their b2 forum activity, to guide them. “As bloggers,
we had similar desires to those other people had,” says Mike. “I
seem to remember still sticking around the b2 forums and looking
at what people were asking about and what people wanted while it
was still in b2 and getting inspiration and ideas from that.”

10

http://profiles.wordpress.org/alexkingorg/

However, much of the early work simply involved refactoring
code and making tweaks. With Matt’s changes to the admin
screens, the first version of WordPress looked very different to b2,
but under-the-hood the changes were minor.

Early on, developer Dougal Campbell questioned whether b2
should be rewritten, or whether the code base should simply be
built upon. On the support forum, he asked how far the developers
intended to go with the rewrite: were they planning to rewrite the
whole codebase from scratch, or would something recognizably b2
still remain? Matt said they planned to structure the code more log-
ically as they went along. Object oriented code was the long-term
goal to facilitate code readability and usability.

Meanwhile, in France, Francois Planque forked b2 to create
b2evolution. Like the WordPress developers, the lack of b2 devel-
opment frustrated Francois and he wanted to continue to develop
b2 for his own needs. Over in Cork, on the west coast of Ireland,
Donncha Ó Caoimh, donncha, was working on his own multi-user

11

http://wordpress.org/support/topic/how-much-will-you-rewrite#post-16
http://wordpress.org/support/topic/how-much-will-you-rewrite#post-16
http://wordpress.org/support/topic/how-much-will-you-rewrite#post-33
http://fplanque.net/Blog/devblog/2003/05/10/b2_evolution_new_features_summary
http://fplanque.net/Blog/devblog/2003/05/10/b2_evolution_new_features_summary
http://profiles.wordpress.org/donncha/

project, b2++. Donncha discovered b2 while searching for a plat-
form to create a blog network for his Linux user group. He found
b2 small, basic, and easy to modify. With b2 as his starting point, he
made major modifications to create blogs.linux.ie. b2++’s templat-
ing system used Smarty, which separated code and presentation,
making it easier for users on the network to change their site’s de-
sign. Donncha didn’t consider b2++ as a fork of b2. “A fork gives
the impression that it was competing — it wasn't competing be-
cause most of the things it did was add multi-user aspects to the
project.” b2 was a platform aimed at individual bloggers, but every-
thing that Donncha did in b2++ created a better multi-user environ-
ment.

Matt considered using Smarty for templating in WordPress.
In April 2003, he wrote about Smarty and SmartTemplate on the
WordPress.org development blog. Matt dismissed SmartTemplate,
saying, “the syntax is so painful I wouldn’t want to subject it on
anyone.” Smarty, on the other hand, “becomes more and more com-
plicated with each release.” With a commitment to keeping things

12

http://web.archive.org/web/20030302025915/http://blogs.linux.ie/
http://www.smarty.net/
http://wordpress.org/news/2003/04/smarty-and-smarttemplate/
http://WordPress.org
http://wordpress.org/news/2003/04/smarty-and-smarttemplate/

simple, neither seemed like the ideal option for WordPress. After
researching templating systems, Matt settled on Smarty and Donn-
cha’s first commit to WordPress, in November 2003, was an initial
Smarty Templating system import. It wouldn’t be until WordPress
1.5 that a theme system would be released. In the end, the develop-
ers decided to create their own templating system. Smarty was too
complicated and the developers wanted to keep templating as sim-
ple as WordPress itself.

With b2 spawning multiple forks, the successor to b2 remained
unclear. But on May 23rd 2003, Michel, still jobless, announced that
once WordPress was launched, it would become the official branch
of b2. On May 27th 2003, the first version of WordPress, WordPress
0.7, was released. Users who switched from b2 to WordPress would
find some new features, most notably the new, simplified admin-
istration panel and the WordPress Links Manager, which allowed
users to create a blogroll. With the focus on the user experience the
developers tried to remove any barrier between writing content and
publishing it on the web. At the time, the website WordPress pro-

13

http://wordpress.org/news/2003/04/template-engines-uncut/
http://core.trac.wordpress.org/changeset/530
http://core.trac.wordpress.org/changeset/530
http://wordpress.org/news/2005/02/strayhorn/
http://wordpress.org/news/2005/02/strayhorn/
http://wordpress.org/support/topic/smarty-the-templating-system-that-came-from-hell?replies=6#post-22474
http://wordpress.org/support/topic/smarty-the-templating-system-that-came-from-hell?replies=6#post-22474
http://www.cafelog.com/index.php?p=500&c=1
http://wordpress.org/news/2003/05/wordpress-now-available/
http://wordpress.org/news/2003/05/wordpress-now-available/

duced was standards compliant, brought up to date with XHTML
1.1 — ensuring a semantic, forward-compatible website that would
work in any browser.

WordPress’ launch sparked immediate project growth. On May
29th, 2003 Matt emailed Donncha to ask if he would consider merg-
ing b2++ with WordPress. Donncha agreed, raising the number of
official WordPress developers to three. Matt also reached out to
Francois Planque to join the project and rewrite his b2evolution im-
provements for WordPress. Francois considered it but felt that “it
was too much work for too little benefit.”

After WordPress 0.7 launched, Matt outlined his thoughts on
the future of WordPress on WordPress.org. Even then, he main-
tained that “one thing that will never change is our commitment to
web standards and an unmatched user experience,” — principles
that guide WordPress development to the present day. These prin-
ciples reflect the fact that the software’s developers were also its
users. WordPress grew out of a need to publish easily to an elegant,

14

http://ocaoimh.ie/2003/05/29/b2-updates-referer-spamming-b2-and-wordpress/
http://b2evolution.net/about/evolutionofb2.html
http://b2evolution.net/about/evolutionofb2.html
http://WordPress.org
http://web.archive.org/web/20031002112415/http://wordpress.org/about/future/
http://web.archive.org/web/20031002112415/http://wordpress.org/about/future/

semantic website. And who better to drive development forward,
than the users of that software?

WordPress 0.71 was released only a month after 0.7. As with
the first release, many new features reflected the needs of the devel-
opers. For instance, OPML import was added to enable importing
to the link manager. At that point, Matt hadn’t yet imported his 100
blogrolling.com links into WordPress. The new OPML importer let
him do that.

Alex King, a Denver-based UX/UI designer and front-end de-
veloper, wrote about upgrading from b2 0.6 to either WordPress
0.7 or b2++. Installing WordPress didn’t offer any significant speed
improvements, while b2++ gave him a site that he couldn’t log into.
In the end, he decided to wait until the next version of WordPress to
upgrade. Matt responded, noting that there would be significant im-
provements to database speed later, announced in WordPress 0.71’s
release as a 300% performance boost: “We’re not kidding,” the an-
nouncement post reads, “this release will perform about three times

15

http://wordpress.org/news/2003/06/opml-import/
http://wordpress.org/news/2003/06/opml-import/
http://alexking.org/blog/2003/05/27/b2-wordpress-and-b2
http://alexking.org/blog/2003/05/27/b2-wordpress-and-b2
http://alexking.org/blog/2003/05/27/b2-wordpress-and-b2#comment-199

(or more) faster than previous releases of WordPress and b2.” It
wasn’t, however, fast enough to convince Alex to upgrade.

Additionally, WordPress 0.71 included improvements to the
Links Manager, administration screens, and the upgrade process.
New post and comment statuses were added. Bug and security fixes
were carried out.

Over the year, Dougal Campbell, dougal and Alex King joined
the team. Dougal had started blogging on September 11th 2001. He
started a blog after terrorist attacks destroyed the World Trade Cen-
ters. “I don’t know if it’s possible,” he wrote on that day, “to ex-
press the soul-wrenching horror that I feel over the events that have
occurred this morning.”

At the time, Dougal wasn’t a b2 user, though he had investi-
gated using b2 for his blog. In November 2002, he posted about
writing his own blogging software, which he called dBlog. Dougal
wanted a number of key features in in his blogging software, in-

16

http://alexking.org/blog/2003/06/10/wordpress-71
http://profiles.wordpress.org/dougal
http://dougal.gunters.org/blog/2001/09/11/morning-of-terror/
http://dougal.gunters.org/blog/2001/09/11/morning-of-terror/
http://dougal.gunters.org/blog/2002/11/12/software-development/
http://dougal.gunters.org/blog/2002/11/12/software-development/

cluding security, connectivity to other blogging platforms, and con-
tent separated from presentation Finally, Dougal wanted configura-
bility — dBlog would have a rich API enabling developers to ex-
tend it.

When Matt emailed Dougal to join WordPress development,
Dougal was too busy with work to help out, and didn’t want to
commit only to let the other developers down. Matt suggested
he contribute ideas, which led to writing code, and in September
2003 — two years after starting his own blog — Dougal made
his first commit to WordPress. As with the other developers, his
first commits were small, iterative steps. He added definition lists
to the wpautop() function that changes double line breaks into

HTML paragraph tags. Many of his early contributions to Word-
Press were RSS enhancements. At the time, people would check
their RSS feed over and over again and it would regenerate just
like a pageview. This could increase the load on the server, slowing
the site down. Web discussions proposed that a HTTP 304 response
could be the fix: the server could determine if there was a cached

17

version at the local end, and if nothing had changed, it would dis-
play the cached version. Dougal used this fix to improve Word-
Press’ RSS capabilities.

At the same time, Alex King started making commits. Alex
started blogging in October 2002, using b2. With a background in
User Interface and User Experience, Alex had only minimal expe-
rience with PHP. Using b2 let him develop his skills with a sup-
portive community around him. He particularly recalls Mike Little
helping him to refine and improve his code. When b2 ceased devel-
opment, Alex kept watch on the forks. Despite finding WordPress
too slow at first, he maintained communication with Matt and in
July 2003, Alex announced that he would help Matt launch a hacks
section on WordPress.org.

In August 2003, Alex officially became a WordPress contribut-
ing developer. His first project was checking in a cursor-aware
quicktag code. This enabled users to highlight a word in the text
editor and use a hotkey to surround the text with HTML tags. In the

18

http://alexking.org/blog/2002/10/11/technical-details
http://alexking.org/blog/2003/07/23/wordpress-hacks
http://alexking.org/blog/2003/07/23/wordpress-hacks
http://WordPress.org

end, the hacks section on WordPress.org was never built, as hacks
were superseded by the plugin system.

In the early days, WordPress developed organically. The core
developers identified new features and bug fixes, and committed
code when they wished. Most developers focused on the aspects of
web development that they already had an interest or a background
in. Matt focused on semantics and usability — it was important to
him to remove any barrier between writing and publishing. Mike
improved his b2 links plugin. He also introduced wp-config-

sample.php. At the time, all b2 and WordPress configuration

information was stored in b2config.php. This meant that an up-
grading user had to store the file and information safely. If they
overwrote it, their configuration information would be lost, and
they’d end up on the support forums looking for help. Including
wp-config-sample.php meant that there was no wp-con-

fig.php file bundled with WordPress — the user renamed the

file wp-config.php, protecting it from being overwritten. This

configuration file protection was something Mike had done for pre-

19

http://wordpress.org/news/2003/06/huge-changes-in-cvs/
http://wordpress.org/news/2003/06/huge-changes-in-cvs/
http://wordpress.org/news/2003/06/huge-changes-in-cvs/
http://wordpress.org/news/2003/06/huge-changes-in-cvs/
http://wordpress.org/support/topic/how-to-upgrade-from-71-to-72
http://wordpress.org/support/topic/how-to-upgrade-from-71-to-72

vious clients, and while he recalls now that it seems like an obvious
thing to do, it solved a problem that users had encountered repeat-
edly. Dougal worked on the XML-RPC layer, which at that time
supported Blogger’s API. XML-RPC is a remote transfer protocol,
which allows for remote calls via HTTP. This means that the user
can post to their blog or website using a client. The Blogger API
didn’t cover all of the features that WordPress had. The Movable
Type API and MetaWeblog API had additional features that built
upon the Blogger API. Dougal added the new features so that the
XML-RPC layer covered the entire feature-set of WordPress.

In late 2003, major changes to the file structure of WordPress
involved replacing “b2” files with “wp-” in what Alex called The
Great Renaming. Tidying up b2’s files had been on Michel’s agen-
da in 2001 and had made some improvements already, but they
lacked consistency. When Matt finally took on the task, it caused
initial problems, especially for hack writers who had used b2 file-
names, but the upheaval was necessary to organize the file structure
for long-term stability. WordPress’ file structure morphed from b2

20

http://xmlrpc.scripting.com/default.html
http://wordpress.org/news/2003/12/the-great-renaming/
http://wordpress.org/news/2003/12/the-great-renaming/

to the familiar WordPress file structure used today, with many files
consolidated into the wp-includes and wp-admin folders.

In parallel to WordPress developments, Donncha worked on
WPMU (WordPress MU). While the initial intent was to merge
the b2++ codebase with the WordPress codebase, they ended up
remaining separate. WPMU had its own version control system
and, eventually, its own trac. Donncha recalls that WordPress and
WPMU targeted different audiences. “Most people just have one
blog,” says Donncha, “they don’t have half-a-dozen blogs running
on one server so multiple sites wouldn’t have been a requirement
for most people.” While this situation changed as it became easier
and cheaper for people to host their blogs, in 2003 it didn’t make
sense to have multi-user functionality available to every WordPress
user. Instead, Donncha worked on WPMU alongside WordPress,
and merged the changes from WordPress into WPMU. When a new
version of WordPress was released, Donncha had to merge each file
individually into WPMU. He used Vimdiff to load the two files side
by side. He could review changes and push them from one file to

21

http://mu.trac.wordpress.org/
http://vimdoc.sourceforge.net/htmldoc/diff.html

another. It wasn’t always easy. “I had to keep track of the changes
that were made in case they broke anything. So at the back of my
mind I’d be thinking ‘did that change I made five files back, will
that affect this change?’” As WordPress got bigger and bigger the
merges became more difficult to manage.

As the software developed, so did the community around it.
Matt launched WordPress.org, in April, 2003. It included a devel-
opment blog, some schematic documentation, and support forums.
The original WordPress homepage told the world that “WordPress
is a semantic personal publishing platform with a focus on aes-
thetics, web standards, and usability.” The site gave the WordPress
community a home.

22

http://WordPress.org
http://web.archive.org/web/20030618021947/http://wordpress.org/

Just as Matt and Mike had started out answering questions on
the b2 forums, new WordPress users got involved, answering fo-
rum questions. This allowed developers to spend more time writing
code. A community of non-developers grew in parallel to the de-
velopment community. People tried WordPress, liked it, and want-
ed to get involved. The project’s user-centric nature meant there
was work for people from a variety of backgrounds: anyone could
answer support forum questions, or get involved with IRC discus-
sions. Craig Hartel, nuclearmoose, was one early community mem-
ber who signed up at WordPress.org in November 2003. He was in-
terested in blogging and had a little bit of programming experience.
“I didn’t have any specific skills,” he says “but there was no bet-
ter way than jumping right in. I decided I was going to find some
way to get involved.” He got to know people by asking thoughtful
questions and letting people know that he was interested in helping.
Craig hung out on the IRC channel until he “realized that getting
involved was a matter of just doing something.”

23

http://profiles.wordpress.org/nuclearmoose/
http://WordPress.org

Along with a few others, Craig pushed for WordPress docu-
mentation. As the community grew, more people asked questions
on the support forums. Documentation was needed to support the
users. In December 2003 Matt, at the behest of WordPress commu-
nity members, launched the WordPress Wiki. Originally, the wiki
was designed to complement the official documentation. The land-
ing page told visitors that it was “designed for us to be able to work
together on projects.” While little work was done on the official
docs, the wiki grew, perhaps because the wiki felt like a much more
informal, freeform way to create documents. The official support
documents, such as a guide to template tags, hacking, and using
WordPress, were much more formal. In a post on WordPress.org,
Cena Mayo, cena, who had taken on the role of reporting on the
WordPress.org blog, outlined some of the issues:

“Part of the problem is the rapidly changing face of Word-
Press itself. The CVS is currently at version 1.2-alpha, with
almost daily updates. 1.2, which will be the next official
release, is much different from the widely used 1.0.1/1.02
series, and even more different from the still-used .72.”

24

http://wordpress.org/news/2003/12/wordpress-wiki/
http://wordpress.org/news/2003/12/wordpress-wiki/
http://web.archive.org/web/20030811221523/http://wordpress.org/docs/
http://web.archive.org/web/20031224140754/http://wiki.wordpress.org/
http://web.archive.org/web/20031224140754/http://wiki.wordpress.org/
http://profiles.wordpress.org/cena/
http://wordpress.org/news/2004/03/a-brief-introduction/
http://wordpress.org/news/2004/03/a-brief-introduction/
http://wordpress.org/news/2004/04/state-of-the-docs-address/

With file structures changing, new functionality appearing, new
template tags, and new database tables, writing formal documenta-
tion must have seemed like a pointless task when the writer knew
that things would change quickly. Over time, the wiki grew, with
more and more people contributing to it. By July 2004, it was
the main documentation for WordPress, and it needed a name. In
WordPress’ IRC chat room, monkinetic suggested “Codex” and in
an email to the mailing list, Matt adopted it, saying it was “short,
sweet, and we can totally own that word on Google.”

Design was another area of growth. Before WordPress’ theme
system, users had to apply a new CSS stylesheet to change the look
of their blog. To enable users to quickly change their blog’s design,
Alex King wrote a CSS Style Switcher hack. This came with three
CSS stylesheets. To grow the number of stylesheets available, Alex
ran a WordPress CSS Style competition. Prizes, donated by mem-
bers of the community, were offered for the top three stylesheets;
$70, $35, and $10. The competition created a considerable buzz
around WordPress. In total, Alex received 38 submissions, increas-

25

http://wordpress.org/support/profile/monkinetic
http://alexking.org/blog/2004/01/20/wordpress-css-style-switcher
http://alexking.org/blog/2004/01/25/wordpress-css-style-competition

ing the number of stylesheets available for WordPress from seven
to 45. He was also able to create a WordPress analogue to the pop-
ular CSS Zen Garden — a style browser for looking through all of
the different stylesheets. The competition was a success, and Alex
ran it again in 2005, this time receiving more than a hundred sub-
missions.

While WordPress.org was a gathering place, it wasn’t the only
home for the WordPress community. WordPress users wrote about
WordPress on their own blogs, sharing tips and tricks. In late
2003, a new kind of blog sprang up — the WordPress community
blog. Early examples include WordLog, by Carthik Sharma, and
BloggingPro. The very first, though, was WeblogToolsCollection,
which was founded by developer Mark Ghosh, laughinglizard.

Mark became interested in blogging tools while studying for
his Masters in computer science. By the time he came across b2,
Michel had abandoned the project and forum support had dwin-

26

http://csszengarden.com
http://alexking.org/projects/wordpress/styles/sample.php?wpstyle=pink_lilies
http://alexking.org/projects/wordpress/styles/sample.php?wpstyle=pink_lilies
http://alexking.org/blog/2005/02/27/wordpress-theme-competition
http://alexking.org/blog/2005/02/27/wordpress-theme-competition
http://wordlog.com/
http://www.bloggingpro.com/
http://weblogtoolscollection.com/
http://profiles.wordpress.org/LaughingLizard/

dled. He found he was spending weeks waiting for responses to
support requests. Instead, Michel pointed him to WordPress.

In WordPress, Mark quickly found a home, and soon after sign-
ing up he set up his own blog. “I looked for Weblog Tools Col-
lection as a Google search and I saved it, and I would always get
very interesting results.” He thought to himself, “if it’s just a good,
cool, set of search terms, I’m sure other people are searching for it
too, I’ll make a blog called Weblog Tools Collection built on Word-
Press.”

When it was launched, WeblogToolsCollection (WLTC) cov-
ered different weblog tools, but slowly it focused more on Word-
Press. “I suddenly got all of this attention for not knowing a lot and
not really doing a lot,” says Mark, “and that really pleased me.”
The appreciation he got from the WordPress community for run-
ning WLTC spurred him to help out more with the forums, write his
own plugins, and get more involved. Posts on WLTC about plat-
forms like Movable Type quickly tailed off and almost all of the

27

posts are on WordPress, or on migrating from other platforms to
WordPress.

At its peak, the blog received 12,000 to 15,000 unique hits per
day but Mark was never fully able to capitalize on the traffic. Run-
ning a niche community blog takes a lot of work and doesn’t re-
sult in a huge monetary payoff. “Most of the people who came to
WLTC wanted news about plugins, or they wanted to know how
to do X, Y, or Z. They were trying to find this information and the
quality of audience was kind of low.” People who visited WLTC
were looking for ways to fix their blog or website, learn tricks, or
find out about the latest free themes and plugins. They weren’t nec-
essarily the types of people that advertisers would value. However,
WLTC would have a major role to play in the development of the
WordPress community, providing a home for discussion and debate
away from WordPress.org.

In late 2003, another key developer joined the community.
Ryan Boren, ryan, was a developer at Cisco Systems. He had con-

28

http://profiles.wordpress.org/ryan

tributed to open source projects like Gnome and the Linux kernel
and was a big advocate of open source software: “I've never run
Windows in my life,” he says. Ryan had been blogging for a num-
ber of years, and wrote his first blog post in September 2000. His
earliest blog posts were on Blogger then Greymatter until he de-
cided that he “wanted something new and a little nicer.” He liked
WordPress' markup and CSS so he made the switch, writing a
Greymatter importer to move his content to WordPress.

Almost straight away, Ryan contributed to WordPress. He sub-
mitted patches to Matt, until “Matt gave me commit [access] be-
cause he couldn't keep up.” He had little experience with PHP,
but became one of WordPress' most prolific contributors, and re-
mains a cornerstone of WordPress development to this day. Much
of his work on the project has had a big influence on the WordPress
ecosystem: one of these contributions was WordPress' plugin sys-
tem.

29

http://ryan.boren.me/2000/09/16/people-pics/
http://core.trac.wordpress.org/changeset/1008
http://core.trac.wordpress.org/changeset/1008

Prior to the plugin system, developers created hacks to extend
WordPress, a practice carried over from b2. A “hack” was a bunch
of code with instructions on where to insert the code into the b2
core files. In b2, administration was carried out in a separate PHP
file. The b2 user would open up a text file, b2menutop.txt,

and add the name of the PHP file that they wished to appear in the
menu. When the code ran, the new menu item would appear after
the default menu items. To add a hack to the administration screens,
the user needed to put the PHP file into the admin directory and
add a reference to it in the text file. If the hack output was intended
to appear on the website, the user needed to edit b2’s index.php

file to put it in the right place. This meant that when the user up-
dated b2, they would have to save the text file and the index file
to ensure that their changes weren’t overwritten, and integrate their
changes into the new files.

The new plugin system used hooks to enable developers to ex-
tend WordPress without having to mess with core files. Hooks are
pieces of code placed throughout the codebase that developers can

30

hook into to run their own code at specific points. There are two
types of hooks: filters and actions. Filters were already available in
b2 for developers to create hacks which changed content. Actions,
which were first added to WordPress 1.2, let developers run code
when events, such as posting, were carried out.

The system transformed WordPress development for both the
core developers and the wider community. It meant that developers
no longer had to try to persuade the core team to implement their
pet feature, and the core team could focus entirely on what made
sense for users. Ryan says that the plugin system enabled the core
developers to implement the 80/20 rule: “Is this useful to 80% of
our users? If not, try it in a plugin.” Unlike hacks, which involved
making edits to core files, plugins could be dropped into a direc-
tory in a user's WordPress install. Non-technical users were able to
extend their blogs without having to mess around with PHP.

The first plugin was the Hello Dolly plugin. The plugin, which
is still bundled with WordPress, randomly displays a lyric from the

31

Louis Armstrong song Hello, Dolly in the top right of the admin. It
was intended as a guide to making plugins. The “first [plugin] that
actually does something useful” was the blogtimes plugin, creat-
ed by Matt, which generated bar graph image showing when posts
were created over a certain period of time.

Ryan's other major early contribution was around internation-
alization. From its very beginning, the WordPress community was
marked by its international nature. The original developers were
from the USA, the United Kingdom, Ireland, and France, and
a forum thread from January 2004 shows how international the
growing community was. Community members came Hong Kong,
Wales, New Zealand, Japan, and Brazil. With people from all over
the world using WordPress, platform translations soon followed.
The Japanese WordPress site was set up in December 2003, only
six months after WordPress launched. As WordPress wasn’t yet set
up for localization, Otsukare, a community member from Japan,
wrote a multilingual hack that enabled users to create multilingual
versions of WordPress. Translators used the WordPress wiki to host

32

http://wordpress.org/support/topic/first-wp-plugin-blogtimes
http://wordpress.org/plugins/blogtimes/
http://wordpress.org/support/topic/world-domination-?replies=43
http://wordpress.org/support/topic/world-domination-?replies=43
http://web.archive.org/web/20031205101812/http://wordpress.xwd.jp/
http://profiles.wordpress.org/otsukare
http://wordpress.org/support/topic/localization-help-needed?replies=102
http://web.archive.org/web/20040513021733/http://wiki.wordpress.org/index.php/fr.po

the translations and the multilingual hack pulled them into the re-
mote WordPress admin.

When it came to internationalizing WordPress, however, they
decided to take a different approach: gettext(). This method

involved marking up the translatable strings with the gettext()

function so that a .pot file could be created with all of the strings

for translation. Translators could translate the strings and generate
.po and .mo files for localized versions of WordPress. To inter-

nationalize WordPress, someone had to wrap all of the translatable
strings with the gettext() function and put them in a format

that provided a full string to the translator that retained context.
This job fell to Ryan. He went through the code, one line at a time,
found everything that could be translated, and marked it up. This
meant that when WordPress 1.2 was released, it not only contained
the plugin API but was fully internationalized.

On May 19th 2004, Matt wrote about the first full localization
that he’d seen -- a localization in Hindi by Pankaj Narula, panjak.

33

http://codex.wordpress.org/Translating_WordPress#Localization_Technology
http://ma.tt/2004/05/wordpress-in-hindi/
http://wordpress.org/support/profile/pankaj

This was before WordPress 1.2 was released with the first official
.pot file (the file that contains a list of all the translatable strings).

Following the release of WordPress 1.2, there was an explosion of
WordPress translations, for example French and Norwegian.

By May 2004, a small, enthusiastic community had grown
around WordPress. It was composed of developers who built the
software, bloggers, volunteers who answered support forum
queries and wrote documentation, and a growing number of inter-
national users who started to translate WordPress. The release of
WordPress 1.2 in May 2004 brought major improvements in flex-
ibility. The new plugin system meant that developers could cre-
ate their own functionality that could plug in to WordPress without
having to create hacks, and WordPress was internationalized, mak-
ing it considerably easier for people to translate WordPress. And
yet while WordPress use steadily increased, it was a catalyst from
outside the community propelled that growth exponentially.

34

http://wordpress.org/support/topic/localizing-wordpress-12-i18n-and-l10n/page/3?replies=69%23post-35436
http://wordpress.org/support/topic/localizing-wordpress-12-i18n-and-l10n/page/3?replies=69%23post-35436#post-56422
http://wordpress.org/news/2004/05/heres-the-beef/
http://wordpress.org/news/2004/05/heres-the-beef/

In early 2004, the most popular self-hosted blogging platform
was Movable Type. The blogcensus.net service recorded Movable
Type of holding around 70% of the market share for self-hosted
blog platforms in February 2004. It was used all over the world, by
everyone from individual bloggers to big media outlets.

On May 13th 2004, Six Apart, the company behind Movable
Type, announced that it would change its licensing. Movable Type
3.0, the newest version, came with licensing restrictions which
meant that users had to not only pay for the software but pay for
each additional install of the software that they created. With Mov-
able Type users frustrated and upset by Six Apart’s actions, Word-
Press community members stepped up to help Movable Type users
migrate to WordPress. Downloads of WordPress of from Source-
forge more than doubled, increasing from 8,670 in April 2004 to
19,400 in May.

The Movable Type licensing change threw into relief who held
the power in the relationship between developer and user. At any

35

http://web.archive.org/web/20040202101816/http://blogcensus.net/?page=tools
http://web.archive.org/web/20040202101816/http://blogcensus.net/?page=tools
http://web.archive.org/web/20040605225637/http://www.sixapart.com/corner/archives/2004/05/movable_type_de.shtml
http://sourceforge.net/projects/cafelog/files/WordPress/stats/timeline?dates=2003-04-01+to+2005-04-01
http://sourceforge.net/projects/cafelog/files/WordPress/stats/timeline?dates=2003-04-01+to+2005-04-01

time, Six Apart could increase prices, change its licensing, and
change the rules for its users. The license protected the developers.
WordPress, on the other hand, had a license that protected its users,
and it was to this user-focused, user-driven community, that Mov-
able Type users flocked. It was the first of many times that Word-
Press’ license, the GPL, would ignite the community, and it posi-
tive effects saw WordPress go from a small fork of b2 to a major
competitor as a standalone blogging platform.

36

	Chapter Three
	On forking WordPress, forks in general, early WordPress, and the community

